Category: наука

Полная автономия жилища на основе солнечной энергии и водорода

В Германии начался приём заказов на компактные системы, предназначенные для обеспечения полной (круглогодичной) энергетической автономии индивидуальных и двухквартирных жилых домов.

Продукт под названием «Picea» предлагается немецкой компанией HPS Home Power Solutions GmbH.

Речь идёт о наборе устройств, необходимых для полного энергообеспечения домохозяйства, большая часть которых интегрирована в одном корпусе.



Picea включает в себя:
•Топливный элемент, с помощью которого вырабатывается электрическая и тепловая энергия в зимний период.
•Электролизёр, предназначенный для преобразования солнечной энергии в водород летом.
•Аккумуляторные батареи для хранения солнечной электроэнергии в течение суток емкостью 25 кВт*ч.
•Солнечный контроллер.
•Инвертор.
•Сезонный накопитель энергии (баллоны с водородом) емкостью 350-1000 кВт*ч электроэнергии.
•Накопитель тепловой энергии (бак с горячей водой).
•Вентиляционную установку с рекуператором тепла и влаги (эффективность теплообмена: 93%).
•Систему управления.

Collapse )

Buy for 10 tokens
Buy promo for minimal price.

Отопление на водороде

Немецкий концерн E.ON, одна из крупнейших энергетических компаний мира, инвестировал в мюнхенскую фирму Elcore, производителя энергоэффективного отопительного оборудования для малых жилых домов на основе топливных элементов.

Техника Elcore позволяет одновременно производить тепло и электроэнергию.

Как это работает?

Водород можно производить разными способами, в том числе а) из воды с помощью электроэнергии путём электролиза и б) из природного газа с помощью специального генератора водорода (реформинг).

Первый способ применяется редко. Он использован, например, в швейцарском «Доме будущего», о котором мы рассказывали раньше. Дело в том, что производить водород из сетевой электроэнергии для того, чтобы потом произвести из него обратно электроэнергию и тепло не слишком рационально. Отопление водородом, полученным в результате электролиза, будет, безусловно, распространяться в будущем, с развитием ветряной и солнечной энергетики, поскольку газ будет использоваться в качестве медиума, промежуточного накопителя избыточной энергии.

Второй способ распространён шире, соответствующая техника применяется в японских домохозяйствах уже порядка 10 лет. В последние годы она стала предлагаться и на европейском рынке.

Природный газ поступает в генератор водорода (реформер). После чего произведённый водород направляется в топливный элемент.

Топливный элемент — электрохимическое устройство, которое производит электроэнергию и тепло, преобразуя исходное вещество (топливо) посредством химической реакции. «Выхлопом» является водяной пар (см. схему).



Elcore производит топливные элементы на основе собственных запатентованных разработок и заявляет КПД, достигающий Collapse )

Автономный дом – солнечная электростанция плюс водород

Мы писали год назад о строительстве Дома будущего. А сегодня он уже введен в эксплуатацию и заселен.



Многоквартирный, на девять семей, «Дом будущего» (по-немецки: Haus der Zukunft) площадью 1000 м2 построен в предместье Цюриха в местечке Brütten. Квартиры в автономном доме сданы в аренду, уже есть первые отзывы арендаторов.

Поскольку энергоэффективность – это первый и неотъемлемый шаг на пути к энергетической независимости, здание, разумеется, построено по стандарту Minergie (швейцарский стандарт энергоэффективных зданий, концептуально и с точки зрения параметров близкий стандарту Пассивного дома — Passivhaus). Понятно, что здесь мощно утеплены наружные стены (теплопроводность U = 0,11 Вт/м2К), кровля (U = 0,15 Вт/м2К), использованы очень теплые окна (U = 0,6/м2К) и т.д.

Энергетическая и инженерная концепция автономного дома проста и логична.

К электрическим сетям дом не подключен, также, как и к внешним источникам тепла. Все производится на месте.

Collapse )

Дом будущего. Полная автономия и использование водорода

Haus der Zukunft (дом будущего) строится в Brütten (Брюттен), предместье швейцарского Цюриха. Процесс уже в завершающей стадии. Готовность: 2016 год. Архитектор: Walter Schmid



Многоквартирный, на 9 семей, дом жилой площадью 1000 м2 отличается полной автономией, независимостью от сетей электро-, тепло- и газоснабжения. Единственно, дом подключен к трубопроводу холодной воды и канализации. Это, пожалуй, первое подобное здание в мире. Домов высокой степени энергоэффективности и с положительным энергетическим балансом (plus energy) уже предостаточно… Но вот автономия в сочетании с высоким комфортом? Каким образом она достигается?

Принципы просты: 1) максимальная энергоэффективность, снижение энергетических затрат за счет утепления ограждающих конструкций, применения вентиляции с рекуперацией, оптимизации энергопотребления и т.п. 2) использование солнечной энергии, 3) накопление и хранение энергии.

Фасад и кровля здания покрыты тонкопленочными фотоэлектрическими модулями. Они не «бликуют» и доступны в разных цветовых решениях, что позволяет удобно вписывать их в дизайн. Кроме того, на кровле используются обычные фотоэлектрические модули на основе кристаллического кремния, которые эффективнее тонкопленочных.

Collapse )

Вспененная древесина

Чего только нет! Ученые разработали теплоизоляционный материал на основе древесины, получаемый в результате вспенивания. Подобным технологическим образом (путем вспенивания) производят большинство современных как «нефтехимических» (пенополистирол, пенополиуретан), так и прочих (пенобетон, пеностекло) утеплителей. В отличие от них, новые жесткие теплоизоляционные плиты на 100% состоят из дерева (так указывает разработчик).

Процесс производства прост. Древесина измельчается до состояния «пасты», которая вспенивается с помощью газа. Далее сушка и отвердевание. Плотность материала может составлять 40-200 кг/м3. Диапазон теплопроводности пока не определен, но она будет меньше 0,05 Вт/м*К.



Уже давно известны и пользуются умеренной популярностью плитные утеплители из древесного волокна (весьма недешевое удовольствие, кстати), они производятся иными способами и обладают меньшей, по сравнению со вспененным деревом, стабильностью формы.

И вот теперь на рынке появится новый вид теплоизоляции, полностью состоящей из дерева. Постарались специалисты немецкого Института исследований древесины WKI (Fraunhofer-Institut für Holzforschung WKI). Пока ещё идут эксперименты – проверяется, какие сорта древесины оптимальны. До выхода продукта на рынок вероятно пройдёт ещё пара лет.

Отопление дома с помощью топливных элементов («отопление водородом»)

Более десяти лет назад американский экономист Джереми Рифкин провозгласил «водородную революцию», путь в новую энергетическую эру: многие миллионы топливных элементов, в которых водород вступает в реакцию с кислородом, будут децентрализовано производить электроэнергию и тепло для всего мира.

В текущем году началось активное движение, топливные элементы стали постепенно перемещаться из исследовательских лабораторий ближе к потребителям.

Топливный элемент (fuel cell) - устройство, в котором происходит химическая реакция веществ, в результате которой вырабатывается электрический ток. Обычно этими веществами выступают водород и кислород.

Топливный элемент

Многие уже слышали про авто, работающее на топливных элементах («на водороде»), которое запустила в серию компания Тойота. Собственно концепты и прототипы подобных автомобилей создавались чуть ли не всеми крупными автопроизводителями ещё с середины 90-х годов. А в космической отрасли топливные элементы используются ещё с 60-х и, например, применялись для электроснабжения корабля многоразового использования «Буран».

Так выглядел топливный элемент в Мерседесе:
MBrennstoffzelle

И вот пришло время запустить их в массовое производство.
Но мы поговорим не об авто. Наша речь об отопительном оборудовании для жилых домов.

[Дальше...]В 2014 году практически все основные производители отопительного оборудования заявили о (скором) начале серийного производства котлов на топливных элементах для домашнего применения и представили готовые прототипы (и уже есть отдельные модели в продаже). Данная техника фактически представляет собой когенерационные установки, основным продуктом которых является электроэнергия, а побочным – тепло.
В Германии уже второй год проводится масштабный тест, в рамках которого установлено 350 единиц отопительной техники на топливных элементах, которые уже проработали в общей сумме 2,3 миллиона часов, выработав 1,3 миллиона КВтч электроэнергии. Промежуточные итоги теста оцениваются специалистами как «чрезвычайно положительные».
Buderus_FuelCell-Perspektive
callux_presse-bild

Как работает такая техника?

Все представленные на сегодняшний день варианты отопительных установок устроены схожим образом. Берется конденсационный газовый котел, к нему приставляется блок топливного элемента плюс водонагревательный и накопительный (буферный) бак для отопления. Котел и топливный элемент параллельно подключаются к газовой сети. Газ поступает в блок топливного элемента, где из него выделяется водород, после чего водород в топливном элементе вступает в реакцию с кислородом, вырабатывая электричество и тепло. То есть природный газ используется без сгорания и соответствующего выхлопа. Газовый котел подключается только в том случае, если вырабатываемой тепловой энергии не хватает для бытовых нужд.

brennstoffzellen-generator-innen

Схема блока топливного элемента:
Топливный элемент
Каковы основные технические характеристики такого оборудования?

Бытовые котлы на топливных элементах производят от 10 до 35 КВтч электроэнергии в день, что в целом покрывает потребности среднего домохозяйства (4000 КВтч в год – приблизительная «расчетная» величина годового потребления электроэнергии семьи из 4-х человек, проживающих в индивидуальном доме, принятая в Германии).

Тепловая мощность оборудования (без газового котла) по российским меркам незначительна: 0,6 – 1,8 КВт в зависимости от модели.
Тем не менее, поскольку сейчас в Европе время тотальной, так сказать, энергоэффективности в строительстве, для компактного пассивного дома такой тепловой мощности может быть и достаточно.

К достоинствам рассматриваемой технологии относится высокая эффективность производства электричества из газа (60%), экологичность, бесшумность работы, сокращение затрат потребителей на электро- и теплоснабжение.
Ну а основным недостатком является цена. Такой прибор стоит сейчас определенно несколько десятков тысяч евро (по имеющимся у нас данным примерно 25 – 35 тысяч). Это в общем-то нормально для новой технологии. Компьютеры раньше тоже стоили дорого.